University of Calgary
UofC Navigation

The fight against cancer: Early detection is key

Doug Ferguson

Dr. Tina Rinker, Schulich School of Engineering.

Cancer isn’t just a matter of professional curiosity to University of Calgary researchers Kristina Rinker, PhD, and her husband, Bob Shepherd.

Even as they helped begin work on a better way to detect breast cancer, a good friend was diagnosed with the disease.

“That really drove it home,” says Rinker, who is director of the Centre for Bioengineering Research and Education at the university’s Schulich School of Engineering. Breast cancer had already touched both Rinker and Shepherd through their families: Rinker’s grandmother suffered from the illness, as did Shepherd’s grandmother and mother.

"I think just about everybody knows somebody that’s been affected by cancer."

About 25,700 women in Canada were expected to be diagnosed with breast cancer in 2016, with about 4,900 dying of the disease. It also likely affected about 230 men, killing about 55.

“I think just about everybody knows somebody that’s been affected by cancer,” says Rinker. “I wasn’t a cancer researcher when I began this, but I saw a potential opportunity to come at the problem from a completely different direction that could actually help people get diagnosed earlier and get better treatment.”

Diagnostic Kits for Breast Cancer

Rinker is a co-founder of Syantra, Inc., a Calgary-based company that has Shepherd as its chief technology officer. Syantra plans to market a breast cancer diagnostic kit that screens blood samples for evidence of the disease. It looks for chemical traces or biomarkers of molecules called mRNA (messenger ribonucleic acid), which carry the instructions from a cell’s DNA to create proteins.

Less than a tablespoon of blood can contain enough mRNA from cancer cells to be usable, says Shepherd, who is also a research associate at the Schulich School of Engineering. Test results are sifted by a sophisticated algorithm created using bioinformatics (an interdisciplinary field that applies everything from statistics to computers to better understand biology) and computer techniques, such as machine learning, that are used in artificial intelligence.

“Without the algorithm, you don’t get the correct information,” says Rinker, who is also an associate professor at the Cumming School of Medicine and a member of the school’s Alberta Children’s Hospital Research Institute and the Libin Cardiovascular Institute of Alberta.  “This is the ‘math’ that takes the raw data and converts it into an output that clinicians can use to help inform their decisions.”

The diagnostic kit was originally conceived for use in individuals who had already been diagnosed with breast cancer, to help determine the risk of that cancer progressing. But as the team looked at the data, it became clear that they had a way to screen for breast cancer in all women.

The research project arose from a visit to the university in 2011 by a South Korean delegation that included Yonsei University researcher Hyeyoung Lee, who later helped co-found Syantra. The visit sparked a formal collaboration with Lee’s team — supported with funding from the Life Science Industries Office in the Alberta government — who helped provide patient samples and assisted with the identification of biomarkers and the creation of cancer tests.

The kit is expected to be available in the European Union by the latter part of 2017, says Rinker. After completing several regulatory steps, including a study planned to get underway in 2017 using Calgary- and Edmonton-area patients, the kit could be available in Canada during 2018, she says.

Many uses possible

Initial use of the kits is currently being discussed in Alberta, says Shepherd. Options include assessing the need for low-risk patients with a breast lump to undergo a biopsy, or using the kit on women under 50, who tend to have denser breast tissue that makes mammograms less effective.

The kits could eventually present an alternative to mammography, offering similar or better accuracy while eliminating exposure to radiation from X-rays. They could be implemented as part a patient’s yearly physical, says Shepherd, or they could be used to examine people before they begin to notice any physical changes in their breasts, catching any cancer before it spreads and becomes harder to eradicate.

The test could also be used to pinpoint the exact type of breast cancer, allowing physicians to combine the test with new, specifically tailored treatments instead of less-specific methods, such as chemotherapy, that affect the whole body. “An important consideration is to identify individuals who need more aggressive treatment versus those who don’t,” says Shepherd. “Being able to accurately and quickly make that call can have a large impact on the care pathway and patient outcomes.”

Screening for other types of cancer

The company is also conducting preliminary work that could lead to the first blood screening test for lung cancer, says Shepherd. “We're going to use what we learned from the breast cancer test and follow that path.”

Lung cancer kills more Canadians than breast, prostate and colon cancer combined. About 28,400 people were expected to be diagnosed with lung cancer in 2016, with about 20,800 dying from the disease. An illness that can also affect non-smokers, lung cancer often goes undetected until the patient starts to be physically affected, says Shepherd.

"If we can catch it early, we can improve patient outcomes."

“Currently, there is a lack of specific screening tests for early stage disease,” he says. “It is possible that early-stage lung cancer can be cured with just surgery, whereas once it progresses into stage 3, it becomes much more difficult to treat, so the idea is that if we can catch it early, we can improve patient outcomes.”