Allan Will, Bilal Abdelhadi, Colton Cuthill, Hamad Rizwan, Jared Schellenberg, Ronel Del Rosario

Introduction

SCHULICH

School of Engineering UNIVERSITY OF CALGARY

The purpose of this project is to develop a tire for a specific in-wheel hub motor used in small 4-wheeled vehicles.

Our tires focus on durability and adaptability, allowing use in a wide variety of applications.

Design must:

- Withstand drop 80-100 inches
- Be easy to install
- Be Temperature resistant (-45°C-60°C)
- Have a lifetime >10 years

Problems

- Vehicles such as rovers are deployed in hazardous conditions and complex terrain
- Wheels are the weakest link as they are susceptible to punctures
- Wheels need to be constantly repaired or replaced
- Presents the need for tires that are durable and maintenance free

Concept Selection

Category	Category Weight	Non- Pneumatic Tire	Shock Tire	Foam Filled Tire
Rigidity	0.7	4	2	1
Impact damping	1.0	3	4	2
Traction	0.4	4	1	3
Load Capacity	0.8	4	3	1
Puncture/Damage Resistance	1.0	4	2	3
Mass	0.6	3	1	2
Cost	0.6	2	1	3
Manufacturing	0.6	2	1	3
Weighted Average	-	2.35	1.50	1.56

Weight scale 1.0 = Most important

Ranking: High (4) – Best

→ Low (1) – Worst

High Inertia Impact Damping Tire For In-Wheel Hub Motors

Pneumatic Tire
3
1
2
2
1
4
4
4
1.71

Geometric Analysis

- 4 Potential NPT designs were considered
- Honeycomb design found to be highest performer
- Different variations of honeycomb design were researched

Design	Structural Compliance Test		Uneven- Surface Test		Shear Resistance Test		Torque Test		
Load	250N	450N	250N	450N	100N	200N	300N	32 N*m	70 N*m
B Deform (mm)	2.9	5.36	10.8	19.5	6.6	13.3	19.9	4.1	9
B Stress (MPa)	0.65	1.17	1.59	2.86	0.75	1.5	2.25	0.79	1.73

Material Selection

Honeycomb designs of various dimensions underwent 4 structural tests in Ansys. "Design B" determined to be the best after producing the results shown in the table.

Casting

Cheaper production for many sets of tires, on an industrial scale

90A Poly U is best option for this design

Final Test Results Test coupon was designed to Long-term fatigue analysis was accurately replicate properties of done in Endurica, and physical full-sized tire, was then 3D fatigue test cycled between printed from 90A TPU 250N and ON every 2.5s for 100,000 cycles. • Endurica predicts a nominal lifetime of over 100 million cycles Displacemen **Max Force** Failure? (Y/N Test @ Max Force **Tested N** Norma 3.755 250 250 5.237 Punctured 5.596 Deformation Under 250N Vertical Compression

Conclusion

- requirements

Possible Improvements:

- Optimize Geometry
- Shear / Rolling resistance tests
- Determine Appropriate Tread Pattern
- Scalability Optimization

• Final Design meets requirements outlined by sponsor:

Proof

Light Weight

 \sim

• Under 4mm of deformation under 250 N load meets rigidity

• Tire can be easily attached to hub with single Allen-key