

CHASSIS - In-Flight Self-Stabilizing Rover

Karan Gill; Hamza Ahad; Msalam Laham; Diganta Sengupta; Gurjiwan Brar; Tony Dong Department of Mechanical & Manufacturing Engineering | University of Calgary

ROBOTARIUM

Introduction

· Problem Statement :

Current Search & Rescue rovers are restricted by having to be placed down upright. A self-stabilizing rover that will allow people to throw it into hard to access areas without worrying about landing upside down would be greatly beneficial

- · Customer Requirements:
- o Individual hub motors for every wheel
- Independently Steerable
- o Lightweight (less than 4kg)
- Withstand drop from 2m
- o Dimensions (LxWxH): 650mm x 500mm x 350 mm

Features

- · X-frame chassis for symmetry and strength.
- Aluminum extrusions for a modular design
- Interchangeable leg mount for mounting suspension components or connecting straight to the wheel
- Top plate manufactured using 5052 Aluminum for high corrosion resistance and workability with 3mm grid pattern holes for mounting electronic components
- Undertray to protect the rover's frame and electronics
 from impact and debris
- Steering Mechanism is obtained using servomotors and the impact force observed by servomotor gear is reduced using bearings

Figure 8 : Undertray

Figure 2 : Rover Chassis (Bottom view)

Results

- Developed mounting locations and space for electrical and suspension components
- SolidWorks simulation was used for stress analysis
- X-frame successfully passed load test using a static normal load of 500 N
- This gives an estimated maximum load capacity of
 51.2 kg
- · Final chassis weight: 7.6 kg.
- Final chassis dimensions (LxWxH): 580mm x 615mm
- x 123mm

Discussion

- Design Limitations:
- Cannot be thrown upside down
- Landing on the side will likely result in electrical component damage
- · Potential future improvements:
- o Decrease chassis size to help reduce weight
- Develop a roll cage that protects from roll-overs or side landings

REFERENCES

- A. Ramirez, "Project 1 and 2 Self-Stabilizing Robot Car in flight." University of Calgary, Calgary, 2022.
- D. Gonzalez, M. Lesak, A. Rodriquez, J. Cymerman, C. Korpela, "Dynamics and Aerial Attitude Control for Rapid Emergency Deployment of the Agille Ground Robot AGRA," IEEE International Conference on Intelligent Robots and Systems (IROS), Pp 1-8, 2022.
- "Logos," University of Calgary, 23-Mar-2023. [Online]. Available: https://www.ucalgary.ca/brand/brand-standards/logo [Accessed: 28-Mar-2023].