Blue Front Solutions: Decarbonized Ammonia Production
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 (Canada Net-Zero by 2050 Goal

« $5

0 / tonne Alberta Carbon Tax

Pre-reforming Reactor

Adiabatic Packed Bed Reactor

Purpose:

« Conversion of C2+ Alkanes in Natural Gas to CH,
o Prevents coke formation in catalyst

o Normalizes Temperature
downstream

Reactions:

m
€yt H,0>nCO+(+ = )Hy AH > 0

CH,+ H,0 = CO + 3H,,AH > 0
CO + H,0 = CO,+ H, AH < 0

CH4 Conversion
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MATLAB Plot of Effects of Steam to Carbon Ratio on
Methane Conversion

and Pressure dependencies
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MATLAB Plot of Effects of Steam to Carbon Ratio on
Pressure Drop

Properties.

Inlet Temperature (°C) 480

Inlet Pressure (bar) 30 (based on Natural Gas specification)
Nominal Tube Diameter (m) 0.0508 (27)

Tube Length 3m

Number of Tubes 5,400

S/IC 2

Ni/MgO Catalyst Mass/ tube (kg) 12

Goal

« Natural Gas —1,000 tpd NH,
« 2.4kg CO,/kg NH; — 0.1 kg CO.,/kg of NH,

KT Analysis

Criteria

CO, Capture

Energy Usage

*Capex/ Opex

Weight HTS (ASU/POx ATR) KBR (SMR/ air fired ATR) ASU/ATR with full Oxidation
Score Justification Score Justification Score Justification
10 3 * 91 % with single 2 » 85% with 2 capture 2 » Similar to KBR
point points

« | on-site emissions
by 93%

+ 7T electricity and
upstream emissions
26%

« | on-site emissions

by 78%

« Telectricity and

upstream emissions

Natural Gas
Feed

———— Desulfurization —

Air Separation|

Ammonia Synthesis Reactor

& Joule Thomson Valves
Adiabatic Packed Bed Reactor

Water Gas Shift Reactors

2X Adiabatic Packed Bed Reactors (High Temperature & Low
Temperature)

Purpose:
Purpose: « Combine H, from the front-end reactors and N, from the ASU to
* Increasing the ratio of H, to CO produce ammonia via the Haber-Bosch reaction

Reaction: CO + H,0 = €O, + Hy, AH <0 Reaction: 3H,+ N, = 2NH, AH < 0
Pressure Drop and H2 vs Number of Tubes
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Catalyst Mass (kg) Inlet Temperature ( °C) 200
Inlet Pressure (bar) 80
MATLAB Plot of Flow Profile in Water Gas Shift Reactor Nominal Tube Diameter (m) 001905 (3/4”)
Tube Length 12m
Number of Tubes 10000
Properties: FeO/Al, O, Catalyst Mass/ 6.8
HT - WGS LT - WGS tube (kg)
Inlet Temperature ( °C ) 300 225 QJouIe Thomson Coefficient vs Temperature
©
Inlet Pressure (bar) 25.84 22.95 le Th RS === Nitrogen Hydrogen Ammoria
. . mson Valv 45
Nominal Tube Diameter (m) 0.0254 (17) 0.0508 (27) Joule Omso alves *Z’ 4
0 35
Tube Length 3m 6m Purpose: £ 3
Number of Tubes 6000 6000  Throttling valves to condense gaseous 8%
H,O/CO 3 10.75 ammonia § 15
Catalyst Mass/ tube (kg) 3.8 (Fe,04/Cr,0,, 27.3 (Cu/ZznO/AlL,O3) . Eliminates the need for cryogenic cooling E 1
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by 115%
7 3 + Adiabatic 1 2nd CC unit T 2 Adiabatic
o electricity .
. ASU_T electricity Ty ASU_T electricity
requirements by 20% requirements
62%
: 2nd CC unit T
ATR { heating Clecticit
requirements for ricity
SMR requirements
8 3 $798.72MM (198 2 $889MM 1 $953MM
SRS (o S Assumed higher
2nd CC
1 s/C = lutility rs/c :)T i than HTS and
ot cost (32%) NEX
CC T H, cost by CC T H, cost by
$0.43/kg H2.

$1.14/kg H,.

*Based on a capacity of 607 tpd, $1.96/GJ natural gas price, electricity assumed to be from Alberta's grid, 10% IRR [2]

Key Design Principles

- Front-End CO,
production

1o JAuxiliary

equipment

emissions

Design Principles

Purpose:

CO,

Reactions:

Combustion
Chamber

Catalyst Bed

—

Effect of S/C on ATR Outlet

Autothermal Reformer

Adiabatic Packed Bed Reactor with upper combustion chamber

*  Production of Synthesis gas (H,/CO) from CH, using steam and oxygen
o Partial Oxidation with sub-stoichiometric O, favors CO production over

o Exothermic oxidation provides heat for endothermic reforming

CHy + 20, © €0y + 2H,0

Total
Combustion

Partial

1
Oxidation CHy + 50, © CO+ 2H,

Steam

Reforming CH, + H,0 < CO + 3H,

Steam

Reforming CH, + 2H,0 & CO, + 4H,

Water Gas
Shift CO + H,0 & CO, + H,
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Properties.

Inlet Temperature ( °C) 580

Inlet Pressure (bar) 29.66

Nominal Tube Diameter (m) 0.01905 (3/4”)

Tube Length 1m

Number of Tubes 6000

S/C 1.7

O/C 1.1

Ni/Al/O, Catalyst Mass/tube (kg) | 0.25
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Feasibility

Cost Metrics
Total Capital Investment
Total Equipment Cost $331MM
Annual Operating Costs $295MM + 3.8% growth
Profitability Metrics

$515MM

NPV $2.02B
IRR 18%
Payback Period 10 years

IRR (18%) > Cost of Capital (7.7%) = Project is Economically Feasible

Operating Cost Breakdown

Natural Gas Feed
16%

Utility & Heating
Requirements

Labour Costs

e = Other Costs

(Catalyst, materials,
= insurance, waste treatment,
contingency, etc.)

Sensitivity Analysis

IRR
Natural Gas Feed Price (+/-)
-50% -25% 0% 25% 50%

-20% 16% 15% 14% 13% 12%

Ammonia -10% 18% 17% 16% 15% 14%
Sales Price 0% 19% 18% 18% 17% 16%
(+/-) 10%| 21% 20% 19% 18% 18%
20% 22% 22% 21% 20% 19%

Carbon Intensity

\

CO, to

Storage
<

CO, Absorber & Stripper Nitrogen Wash Column

Purpose:
* Absorption Column:
o Remove CO, from process stream
« Stripping Column:
o Regenerate MDEA solvent for re-use in absorption
process
o Captured CO, is sent to storage

Purpose:

* Removes remaining inerts from Synthesis Gas (CO, CO,,
CH,) to protect ammonia synthesis catalyst

« Ensures the correct stoichiometric ratio of H,:N,

Properties:

_ Average Operating Temperature (°C) |-95
Properties: Operating Pressure (bar) 27.6
: . Column Diameter (m) 8.83
C Absorptlon el Stnppmg Ol Height of packing in Column (m) 1.44
olumn Diameter |3.3m Column Diameter |3.9m Height of Column (m) 344
Column Height 5.3m Column Height 19.8m :
Packing Type 2” Plastic Pall Packing Type 2” Plastic Pall
Rings Rings
Packing Structure | Random Packing Packing Structure | Random
Packing
Solvent 1100 ms/hr
Circulation Rate
Heating 3.5x108 Btu/hr
Requirement

Syngas To 2nd
Compressor

3990 kPa

VLV-102

€
h g

2” Plastic Pall Rings:

Random Packing:

Syngas to -
as E-101 nert

40.74C *2758 kPa .
2758 kPa N2 Column 257%%2 c

Gas out kPa

To Ammonia J
}oop

20C -
2758 kPa K103

Sy

Liquid
in

Gas in L
NH3 Compressor
Duty

Liquid out

Cl=0.0027 kg CO,/ kg NH; + 0.133 kg CO,e/kg NH; = 0.136 kg CO,e/ kg NH,

| Y ) | Y / |

CO, from Electricity Use in
Auxiliary Equipment
(Pumps, Compressors
etc.)

Equivalent includes all
GHG Emissions (CH,, N,O
etc.)

Process CO, from
Synthesis Gas Production

- kg CO,e > kg CO,
Based on Government
Canada Emission Factor

of 0.64 kg CO,e/kWh [3]

Carbon Intensity Contributors

7% 2

61%

Carbon Removal Pump
Ammonia Production Compressor 2

m Carbon Removal Compressor
Ammonia Production Compressor 1
Front-End Process Emissions
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