Ethyl acrylate (EA) is washed with 5% NaOH to:

- Deionized (DI) water is used throughout the process.
- Produced by filtering municipal water.
- Stored for later use.

THE GLIXO SOLUTION

- A hydrogel wound dressing that provides:
 - Natural cooling sensation
 - Oxygen exchange for faster healing
 - Moisture at the wound site
 - Simple removal by rinsing with water, for ease of use at home and in clinical settings

PROCESS OVERVIEW

Chronic Wounds
- Treatment is challenging due to:
 - Increased risk of infection
 - Patient discomfort
 - Slow healing rates
 - Large cost burden on the Canadian healthcare system.

Recovered from ethanol washing streams

Natural cooling sensation

PEA Recovery

Some wound dressing options include:

- **Gauze**
 - Adheres to the wound, causing pain and damage upon removal

- **Hydrocolloids**
 - Expensive
 - Slow healing due to low oxygen exchange

Process Overview

1. **Water Filtration**
 - De-ionized (DI) water is used throughout the process.
 - Produced by filtering municipal water.
 - Stored for later use.

2. **Primary Feed Preparation**
 - Dissolution and mixing of:
 - Polymer backbone, hydroxypropyl methylcellulose (HPMC)
 - Reaction initiator, potassium persulfate (KPS)

3. **EA Feed Preparation**
 - Ethyl acrylate (EA) is washed with 5% NaOH to:
 - Remove impurities
 - Remove MeHQ, an inhibitor that prevents EA polymerization during storage.
 - EA is heated before the reactor with a hot water loop

4. **Graft Copolymerization Reaction**
 - EA is grafted onto HPMC using KPS as an initiator:
 - Continuously stirred tank reactor
 - High exothermic (-484 kJ per kg hydrogel)
 - Reaction conditions: T=60°C, P=115 kPa

5. **Washing and Separation**
 - DI Water
 - Ethanol
 - Ethanol
 - DI Water

6. **PEA Recovery**
 - Recovered from ethanol washing streams
 - Water is added to precipitate PEA from the solution
 - Sold to qualified suppliers to be purified and used in various biomedical applications

PROJECT IMPACTS

- **Safety**
 - Compliance with medical product quality regulations
 - Proper storage and heating of EA monomer
 - Prevention of thermal runaway
 - Inherently safer design
 - Limiting use of hazardous substances
 - Low temperatures and pressures throughout
 - Process and safety control systems identified through hazard and operability (HAZOP) study

- **Environmental**
 - Reduction of waste through PEA byproduct recovery
 - Hydrogel biodegradability prevents environmental accumulation
 - Minimal plant footprint

- **Social**
 - Creating jobs in Alberta within the biomedical field
 - Improving accessibility and affordability for Canadian consumers

ACKNOWLEDGEMENTS

Thank you to Dr. Gemma (Qingye) Lu and Amber Chen for supporting and supervising this project.

REFERENCES

