
CV-HIP
Hardware Accelerated Image Processing Library
Amir Abdrakmanov, Angelo Gonzales, Dave Sharma, Evyn Rissling, Mohamed Yassin

Schulich School of Engineering, University of Calgary

Results

Over the course of this project:
• An API framework was created with C++, C and Python 

interfaces.
• All 17 must-have algorithms were implemented with the above 

interfaces
• An extra 4 algorithms were added on top of that, 3 of them have 

all the interfaces
• Correctness tests for each algorithm were implemented in each 

language
• Performance tests were added to compare against CV-CUDA's 

performance on similar hardware
• One simple C++ sample app for viewing the outputs of each 

operator
• Two complex C++ sample apps for doing useful work with the 

SIFT algorithm
• A simple C sample app to verify C compatibility
• A moderate Python app to preprocess images for useful work

Abstract

The field of computer vision is rapidly changing and evolving. Within this rapidly evolving context improvements can be made to existing algorithms 
and libraries. One such improvement is hardware acceleration, particularly using the graphics card of a computer to speed up algorithm processing 
time.

The graphics card manufacturer NVIDIA has realized this and created a programming library called CV-CUDA that allows users to process images 
much faster. Unfortunately, CV-CUDA only runs on NVIDIA hardware. Our project, sponsored by the semiconductor company Advanced Micro Devices 
(AMD), solves the problem of hardware acceleration for AMD through the creation of an AMD compatible library which performs a similar function to 
that of CV-CUDA.

This project has four main deliverables:
• A set of 17 must-have image processing algorithms with and without graphics card acceleration
• The ability to use this library in three different programming languages
• The ability to perform unit testing of each algorithm
• A set of one or more sample applications that use the library to do meaningful work, like preprocessing images for machine learning.

Our project makes use of several other pre-existing AMD libraries and the AMD Heterogeneous Interface for Portability (HIP) programming language to 
achieve these deliverables.

Implemented Algorithms

Original Image Bilateral Filter Bounding Box Advanced Color 
Conversion

Box Blur Channel Reorder Color Conversion 2D Convolution

Custom Crop

Histogram 

Flip Gamma Correction Gaussian Filter Gaussian Noise Median Blur Remap Resize Rotate Threshold

Warp Affine Warp Perspective Scale Invariant 
Feature Transform


	Slide 1

