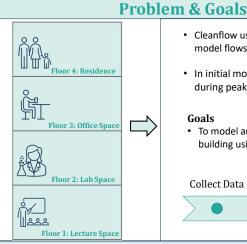


Sanitary System Design

Ahmed Elkamash, Hanan Ulusow, Harjiwan Kang, Jasman Bilna, Minglu Shao, Stead Mbala, Tommy Michelussi Dr. Kerry Black, Ayla Lauret, Brock Dyck

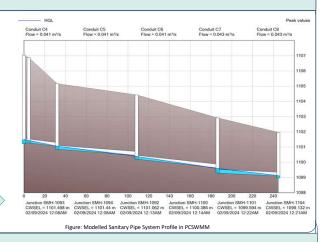

Phase 1 Phase 2

· CleanFlow Systems Ltd. are conducting a project to determine peak wastewater generation values for a proposed multiuse building on the UCalgary campus

· Current industry standards in Alberta that predict wastewater generation use values which are not specific to post secondary campuses.

Goals


- To develop a method for estimating peak wastewater flows on campus
- · For more effective sizing of future sanitary systems.



- Cleanflow used the flowrates from Phase 1 to predict and model flows for the new proposed building
- In initial model, surcharging occurs in the existing pipes during peak flow

Goals

· To model and design a sanitary system for the proposed building using wastewater generation flows from Phase 1

Design and Results

Phase 1

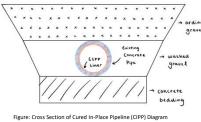
• We developed three alternative strategies to determine building populations and calculate the average daily design flow per capita (G), a crucial factor in sanitary system design.

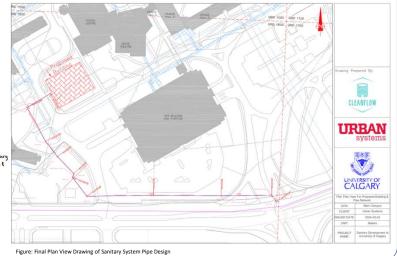
Strategy

- · Gathered data on the number of occupants attending lectures using classlists and floorplans
- · Observed number of occupants in study spaces and common spaces

	Wastewater Flow Generation (L/day/capita)	
Lecture Spaces	9.06	
Lab Spaces	30.38	
Library Spaces	65.65	
Student Residence	63.09	

Phase 2


- · Final design is to reinforce the concrete pipe material and use pipes as a temporary storage during high flow This design is unique since it allows for brief durations of surcharging
- · Reinforce concrete pipe with cured in place pipeline (CIPP) that has a life expectancy of 50-60 years [1]


Benefits of Final Design

Lifecycle cost than total pipe replacement

Construction Time and Labor

Convenience for students

References

1. J. S., "How long does CIPP lining last?," Trenchless Pipe Repair, https://restorepipe.com/blog/how_long_CIPP_lining_last#:":text=if%20properly%20maintained%2C%20CIPP%20lining,applied%20to%20it%20over%20time.Nunc consequat, metus ac sagittis aliquam, purus quam euismod purus, non ullamcorper augue orci eget ligula.