
Netflow Data Streams Analysis Tool
Network Innovations Inc.
Author(s): Alex Lewis | Kaitlin Culligan | Kunal Dhawan | Karl Winkler | Henry Wu | Thomas Kusinski
Schulich School of Engineering, University of Calgary

Introduction

In a geographically dispersed network, there are multiple devices such
as firewalls and routers located at each point of presence. Network
traffic is logged from these devices as NetFlow data streams. NetFlow
is a protocol designed by Cisco as an easy way to communicate
session information.

Results

Our initial goal for this project was to create a system that could
process 100 concurrent data streams while maintaining a real-time
throughput of under 10 seconds end-to-end. While this requirement
seems simple, due to the nature of Network communication, the
number of concurrent data streams is actually a function of two
metrics:
● Packets/Second: This is simply the rate at which our system

receives input data.
● NetFlow Streams/Packet: This is the number of Netflow Flow

Records present in an incoming packet.

Average End-to-End Time (100 Concurrent Streams):
1 Packet/Sec: 0.058s
10 Packet/Sec: 1.453s
20 Packet/Sec: 1.546s
30 Packet/Sec: 3.772s

For more information on testing methodology and results, a team
member would be happy to discuss!

CONTACT
Alex Lewis
Email: alexander.lewis@ucalgary.ca
Phone: 403-837-5620

Abstract

Network Innovations is currently looking for a scalable, robust solution
to aggregate all the data from these distributed systems, extract key
session information, and analyze trends across their network. Our
solution aggregates, stores, and provides real-time analysis of the
geographically dispersed NetFlow data streams, providing an
easy-to-understand representation of current network trends and
metrics, while focusing on modularity and effortless expandability.

Our solution can be split into 4 modules: NetFlow collector, Amazon
SQS, Analysis Engine, and Solr Database. Each module has been
designed as a standalone functional unit, allowing ultimate flexibility
when it comes to scaling our solution to larger networks.

The Solution
NetFlow collector: Interfaces NetFlow V5 data stream and prepares
packets for the analysis engine.
Amazon SQS: Stores NetFlow packets that back up before the analysis
engine to ensure no packets get lost in our system.
Analysis Engine: Extracts key data from the packet, and performs
primary analysis of the data.
Solr Database: Solr provides a free, open source, easy to integrate
database for us to store processed data.
API: Used to move data to/from the database to visualize collected data,
and help ease the integration process of our system into pre-existing
systems.

Methods and Materials
Our project was written entirely in Java as it interfaces nicely with a
broad range of open source tools. Our sponsor currently operates their
existing system on Amazon Web Services (AWS), and requested that
our solution also be done with AWS to allow easier integration into
their system. Additionally, it was requested that our solution be
compatible with a Linux environment.

Our design methodology revolved around modularity and flexibility. We
designed each component as a standalone functional unit, then
connected each component using AWS and JSON tools. In doing this,
we allow each component to be removed, modified or expanded as
needed, providing a great amount of scalability and customizability for
future developers trying to integrate our solution into a larger system.

Key Tools:
● Java Spring: Java Framework
● JUnit: Unit testing framework
● Apache Solr: NoSQL Database
● Amazon SQS: Managed message queue system
● Amazon EC2: Cloud computing system

References
1. https://en.wikipedia.org/wiki/NetFlow
2. https://www.cisco.com/en/US/technologies/tk648/tk362/technologies_white_paper09186a

00800a3db9.html

Conclusions
This project has been successful as a proof of concept, however in order
for this solution to be implemented in a real world scenario it will need to
be expanded upon. For this project, we were constrained to only using the
free tier of AWS, which drastically limits many factors that attribute to our
systems throughput. Some of these limiting factors include: core speed,
input data rates, and the level of parallelism we can achieve.

By simply moving our solution to a more powerful version of AWS the
performance will drastically increase. However, by analyzing the behavior
of our system at lower input rates we can evaluate the most optimal way to
scale our solution up to an industrial level.

