

Closed Loop Geothermal Facility Design for End-of-Life Oil and Gas Wells

Team: Adam Robinson, Davis Tenta, Emma Kachanoski, Jamie Thompson, Lauren Wentzel; **Department of Chemical Engineering, University of Calgary** Academic Advisor: Dr. Apostolos Kantzas, PhD, P.Eng **Project Sponsor**: GeoGen Technologies Inc.

- transition.
- geothermal drilling.
- regulations.

- Surrounding

- (\mathbf{R})

Venting

- Sensors

THERMOSIPHON 2000 -Fluid Descent · · · Fluid Ascen

STREAM CONDITIONS

STREAM	Α	В	С	D	CFI	CFO
Т (К)	313	384	335	304	293	323
P (MPa)	10	13.9	7.5	7.4	0.1	0.1
<i>ṁ</i> (kg/s)	3	3	3	3	6.7	6.7
h (kJ/kg)	312	492	469	305	83	205

PLANT PERFORMANCE

- **Turbine Output:** 64.7 kW

NET POWER OUTPUT OF 49 kW

CONTACT: Jamie Thompson Email: Jamie.thompson1@ucalgary.ca Phone: 403-926-5263

PROJECT OVERVIEW

A thermosiphon is employed to circulate the working fluid without an external driver. The working fluid becomes hotter as it flows in the wellbore, the density decreases, causing the gas to rise to the wellbore outlet, while the colder and heavier fluid sinks to the bottom.

Compressor Requirement: 15.9 kW **Pump Requirement:** 0.17 kW