Locked In: Development of an autonomous goal-based route planner for drone missions

Zhifan Li, Jia Gu, Kenny Jeon, Matteo Morrone, Taimoor Abrar, Celia Zhang
Schulich School of Engineering, University of Calgary

Motivation

Lockheed Martin CDL Systems (LMCDL) is advancing Unmanned Aerial Vehicle (UAV) mission planning through the development of cutting-edge ground control software. The SAFE project introduced a plugin for autonomous route mapping but encountered obstacles in achieving optimization and dynamic hazard navigation.

Building on this foundation, the subsequent Locked In project seeks to enhance the plugin by integrating dynamic route recalculation, elevating fuel efficiency through refined optimization algorithms, and ensuring a consistent, stable user experience. The goal is to deliver an advanced autonomous drone navigation system designed to avoid emerging obstacles while simultaneously reducing flight expenses.

Problem Statement

UAVs are increasingly used for their cost savings and lower manpower requirements. LMCDL has led in creating software for their control, but operators still need to constantly manage the UAV, diverting attention from other tasks.

The SAFE project automated route planning in 2019 but lacked full optimization and dynamic data handling. Specifically, the original algorithm cannot avoid dynamic obstacles, either being an updated obstacle in the map, or an external third-party vehicle in flight.

The new Locked-In project builds on this, enhancing the VCSI plugin with better navigation, reliability, and efficiency in mission planning. The updated plugin is expected to have functionalities such as multi-thread handling & route planning, dynamic route recalculation to avoid emerging obstacles, third-party vehicle visualizations, etc.

Algorithm

• A* is a widely-used pathfinding algorithm known for its efficiency and optimality.
  • It operates on a weighted graph, where nodes represent locations, and edges represent connections between them.
  • A* uses a heuristic function to guide its search, balancing the cost of reaching a node from the start with the estimated cost to reach the goal from that node.
  • By intelligently exploring the graph, A* efficiently finds the shortest path from a start node to a goal node.

Our program uses this algorithm to map an initial route for Lockheed’s drones, avoiding static obstacles as well as rerouting sections of the route whenever new dynamic obstacles such as third-party vehicles are set to collide with our drone.

Key Software Components

SafeCollisionDetector: Collision Detection Management
Utilizes simulated real-time location data from third-party vehicles and obstacles.

SafeVehicleVisualizer & SafeVehicleVisualizerThread: Path Visualization
Dynamic visualization of third-party vehicles & obstacles.

SafeRoutePlanner & SafeRouteCreator: Algorithm and Route Calculation
Multi-thread optimized algorithm for route calculation with real-time data inputs.

Results

1. Dynamic Route Recalculation: Plugin can now accommodate for simulated live incoming data on hazards and recalculate route as needed.
2. Visualization of Dynamic Route Recalculation: Plugin will show a visualization in VCSI of the vehicle in control flying a simulated route and avoiding simulated incoming hazards in real time.
3. Handle Vehicle of Different Sizes: Now can adjust the size of the keep out zone to handle different vehicle sizes.
4. Visualization of Algorithm: Pathfinding algorithm is now visualized via red cubes to show the operator potential paths explored for troubleshooting purposes.
5. Parallelize Plugin: Have plugin run on its own thread so that it does not clog up VCSI.