Our design is able to remove 50 kW from a facility and maintain a temperature of 25°C and pressures of 1 atm. The key goal is to remove 50 kW of waste heat from an arbitrary facility while maintaining temperature and pressure conditions of 25°C and 1 atm.

Abstraction and Introduction

The design challenge is to investigate the technology and controls needed to dissipate heat generated from an industrial processes to a lunar environment. The design will be a multistage cycle with R11 as the operating fluid. A shell and tube heat exchanger supports and optimizing the array of heat pipes.

Discussion

Facility heat exchanger:
- 50kW of waste heat is removed from the facility via a hot water loop
- Shell side contains hot water
- Tube side contains R11 refrigerant

Radiators and Heat Pipes:
- Radiation is the only way to reject heat since there is no atmosphere on the moon
- Heat pipes rapidly transfer heat from the R11 to the ~400 m² of panels
- Weight is minimized by using thin hexagonal supports and optimizing the array of heat pipes

Heat Shielding:
- A shield is required to prevent our system from heating up due to the direct sunlight during the day
- AZ-93 coating will be applied to the outside of the radiators to reflect the radiation and prevent our heat pipes from becoming inefficient

Methods

Engineering Equation Solver (EES) and SolidWorks: It has a larger database of information regarding fluids and is more efficient when performing traditional calculations ourselves.

Thermodynamics: Using our knowledge of thermodynamics, we compared single loop, cascading, and multistage cycles.

Materials

- **Shell and tube heat exchanger:** 304 Stainless Steel with copper tubes inside
- **Pipes and valves:** 304 Stainless Steel is chosen to balance weight, strength, and durability
- **Heat Shield Coating:** AZ-93 White Thermal Control, Inorganic Paint minimizes the amount of solar radiation absorbed while still rejecting 89-93% of the heat
- **Radiator Assembly:** Aluminum 6061-T6 is commonly used for space application
- **Heat Pipes:** Ammonia is commonly used in space application

Results

- The shell and tube heat exchanger is 35.64 kg, making it lighter than the alternative air heat exchanger.
- This system requires 22 kW of power at lunar noon; this exceeds the power budget in order to achieve a reasonable size and weight for the radiator panel.

Conclusion

- Our design is able to remove 50 kW from a facility and maintain a temperature of 25°C and pressures of 1 atm. It will weigh about 12475 kg and has a maximum power requirement of 22 kW.
- Our final design is a multistage cycle with R11 as the operating fluid. A shell and tube heat exchanger operates inside the facility, and a heat pipe radiator rejects heat into the vacuum of space via radiation.
- **Next steps:** For future improvements, we would recommend looking into optimizing the design of the radiator panel and consider axial grooved wick structures to improve heat pipe efficiency.

Acknowledgements

Zac Trolley, Melissa Roth, Hamed Rahmati Aydenlou, Dr. Ron Hugo, Dr. Aggrey Mwesigye, Dr. Kee-Young Kim, Dr. Joseph Thekinen, Dr. Alex Ramirez

References

2. https://www.pexels.com/search/moon/

Contact Us

Zac Trolley
Email: Zac.Trolley@lunarwatersupply.com
Phone: 403-618-9237