

ABSTRACT AND INTRODUCTION

The design challenge is to investigate the technology and controls needed to dissipate heat generated from an industrial processes to a lunar environment. The key goal is to remove 50kW of waste heat from an arbitrary facility while maintaining temperature and pressure conditions of 25C and 1 atm.

Design Constraints	Boundary Conditi
 Weight restriction: 1000kg Power Budget: 10kW Operation: autonomous for 6-month periods (bi-annual cleaning) 	 14 day and night cyc Vacuum of Space – convection for heat Temperature Range 450K

 $(8) \rightarrow (1)$

Facility heat exchanger:

- 50kW of waste heat is removed from the facility via a hot water loop
- Shell side contains hot water
- Tube side contains R11 refrigerant

Radiators and Heat Pipes:

- Radiation is the only way to reject heat since there is not atmosphere on the moon
- Heat pipes rapidly transfer heat from the R11 to the ~400 m² of panels
- Weight is minimized by using thin hexagonal supports and optimizing the array of heat pipes

Insulation:

- Lunar regolith is a suitable insulator for underground components
- Coated in Cr3C2-NiCr for abrasive protection Aerogel used for above ground components because air is lightweight and acts as a good insulator.

CONCLUSION

- Our design is able to remove 50 kW from a facility and maintain a temperature of 25C and pressures of 1atm. It will weigh about 12475 kg and has a maximum power requirement of 22kW.
- operates inside the facility, and a heat pipe radiator rejects heat into the vacuum of space via radiation.
- Our final design is a multistage cycle with R11 as the operating fluid. A shell and tube heat exchanger • Next Steps: For future improvements, we would recommend looking into optimizing the shell and tube heat exchanger and consider axial grooved wick structures to improve heat pipe efficiency.

Lunar Facility Heat Exchanger Active Thermal Management for Industrial Processes on The Moon

Aaron Li, Alvin St. John, Cameron Lamont, Fatin Hossain, Jessy Xu, Vinshie Chiew **Schulich School of Engineering, University of Calgary**

METHODS

Engineering Equation Solver (EES) and Solidworks: It has a larger database of information regarding fluids and is more efficient than performing traditional calculations ourselves. • Fluid criteria: corrosion to metals, triple point pressure, viscosity, conductivity, molar mass • Calculations performed for optimization: heat pipe specifications, heat exchanger weight,

- multistage cycle
- Solidworks: used to run simulations for verification

Thermodynamics: Using our knowledge of thermodynamics, we compared single loop, cascading, and multistage cycles.

- A constant heat load and a wide variety of external conditions necessitates for an active heat transfer system.
- Multistage adds more components and weight, but lowers the overall power budget and provides a COP of greater than 1.

MATERIALS

- Shell and tube heat exchanger: 304 Stainless Steel with copper tubes inside
- of solar radiation absorbed while still rejecting 89-93% of the heat
- **Radiator Assembly:** Aluminum 6061-T6 is commonly used for space application
- **Sensors**: Silicon Diode Sensors have high accuracy and can withstand extreme temperatures
- also less toxic than other alternatives.
- Heat Pipe Fluid: Ammonia is commonly used in space application

RESULTS

- 142.5kg plate heat exchanger.
- order to achieve a reasonable size and weight for the radiator panel.
- each section of the system. This provides an example of a SCADA view of the system.

Zac Trolley, Melissa Roth, Hamed Rahmati Aydenlou, Dr. Ron Hugo, Dr. Aggrey Mwesigye, Dr. Keekyoung Kim, Dr. Joseph Thekinen, Dr. Alex Ramirez REFERENCES

CONTACT US

Zac Trolley

Phone:

403-618-9237

Email:

Zac.Trolley@lunarwatersupply.com

https://rovashield.com/category/news/jios-in-the-press/ https://www.pexels.com/search/moon/ https://www.airenergy.com.au/compressed-air/air-compressors/oil-free-sc roll-other/

• **Pipes and valves**: 304 Stainless Steel is chosen to balance weight, strength, and durability • Heat Shield Coating: AZ-93 White Thermal Control, Inorganic Paint minimizes the amount

• Working Fluid: R11 meets our pressure, temperature, and triple point requirements. It is

• The shell and tube heat exchanger is 35.64kg, making it lighter than the alternative

• This system requires 22kW of power at lunar noon; this exceeds the power budget in • A simulation prototype was developed to demonstrate the interdependencies between

