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Motivation and the Problem

Businesses of all types store proprietary data on productivity platforms and 
web services that keep company information centralized and easily accessible 
to all members of the workforce. One such data source is Notion, a versatile 
organizational tool that offers use cases including documentation, task 
management, collaborative workspaces, client and sales management and 
more. However, while the collaborative abilities Notion and other productivity 
services provide make the business landscape more convenient than ever, these 
platforms still lack concrete personalization features that could enhance data 
interactions making them smarter and more efficient. This presents a significant 
problem in the dynamic business sector where every second counts. Employees 
must dig through hundreds of document pages to find small and large amounts 
of information necessary for the completion of trivial tasks, wasting valuable 
time in the process.

The Team

Objective and Project Scope

Our primary objective is to amplify the value derived from companies’ 
proprietary data assets, while also enhancing the user experience within the 
context of conversational AI-powered data retrieval. Our solution entails 
constructing a personalized chatbot that seamlessly integrates with Notion, 
securely embedding records to be quickly and easily accessed by the 
automated assistant, enabling employees to engage in conversations with their 
own documents. This work assistance chatbot will tailor its responses, ensuring 
effortless access to companies' internal knowledge bases, all while prioritizing 
data security. An intuitive user interface will make interactions smoother, and 
the chatbot will incorporate memory and history-tracking features to foster 
context-aware and cohesive dialogues with users. Our goal is straightforward: 
Enabling employees to ask questions about their own documents and receive 
answers that truly suit their needs, making chatbots more helpful while 
keeping companies' data safe. 

Embedding and Retrieval Process

Embedding and retrieval works based on a Retrieval-Augmented Generation 
(RAG) system which enriches a user’s question with additional context from 
other sources to supply the retrieval algorithm creating highly relevant 
responses. Before embedding is commenced, documents from Notion must be 
extracted and converted into single page documents using LangChain. These 
documents are then split into small chunks of data using LangChain for the 
embedding. Embedding is completed by transforming text into a list of numbers 
allowing computers to understand, while preserving meaning and relationships 
between words in a text. This is accomplished using OpenAI’s embedding 
model. These large documents, now split into small chunks of mathematical 
data, or vectors, are stored in a vector database, which plots each vector in 
close proximity to other semantically related vectors (simplified example 
below). For this project we used pgvector, a vector similarity search extension 
for PostgreSQL. The closer two vectors are in the multi-dimensional vector 
space, the stronger their semantic relationship is.

Once the data embedding is completed, a user may ask a question. Like the 
data in the embedding step, the question itself must be embedded into the 
vector space to perform a similarity search. Then k vectors with the closest 
proximity to the user’s question are collected, where k is defined by us, and is 
all sent to the Large Language Model (LLM)  as “context”. The LLM compiles the 
data and generates text providing an answer with relevant information back to 
the user. 

Methodology

Throughout the duration of the project, our group employed the agile 
approach for managing project deliverables and tasks. This was completed 
using one-week scrums. During the initial design phase in the fall semester, 
tasks would be divided amongst group members to be completed or 
progressed through during the week. Depending on the complexity of a task at 
hand, sub-groups given a specific purpose could be formed. Weekly meetings 
held, were meant as a time to update the rest of the group on each task’s 
progress, keeping all members up to date on specifications of the project. This 
ensured each group member possessed a maximum amount of understanding 
on project details that they had not worked on, which was crucial for the 
implementation stage during the winter semester.

For implementation, a list of features/requirements expected for the final 
product the group was visualizing was created, separated into unique levels of 
priority. Basic functionality was given the highest priority, while additional 
features fell to lower priorities depending on their importance and determined 
ease of implementation. This feature list was used to distinguish tasks during 
the implementation phase of the project.

For the winter semester, again using a one-week scrum cycle, two meetings 
were held per week. The first meant for minor updates to tasks or requesting 
support from other members, and the second meant to demo any new 
functionality completed during the week. This was repeated until the eventual 
completion of the project.

The group has been able to complete a final product which successfully 
integrates with Notion to process user’s questions and return a context-aware 
response acting as a digital assistant with access to embedded files as selected 
by the user. This meets the initial goals of the project, allowing users to quickly 
acquire information, summaries, tasks, and more, saving hours searching 
through documents manually. 
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"Retrieval-augmented generation for knowledge-intensive NLP tasks." IBM 
Research Blog. Retrieved November 14, 2022, from
https://research.ibm.com/blog/retrieval-augmented-generation-RAG

"Embeddings - OpenAI API." OpenAI. Retrieved November 14, 2022, from
https://platform.openai.com/docs/guides/embeddings

"pgvector and Embedding Solutions with Postgres." Tembo. Retrieved 
November 14,
2022, from https://tembo.io/blog/pgvector-and-embedding-solutions-with-
postgres/

References

https://research.ibm.com/blog/retrieval-augmented-generation-RAG
https://platform.openai.com/docs/guides/embeddings
https://tembo.io/blog/pgvector-and-embedding-solutions-with-postgres/
https://tembo.io/blog/pgvector-and-embedding-solutions-with-postgres/

