
Department of Electr ical and Software Engineering, Schul ich School of Engineering

Project Manager,
UI/UX Des ign & AI

Infrastructure &
Backend

Frontend &
Backend

Infrastructure,
Deployment & AI

UI/UX Des ign &
Frontend

UI/UX Des ign &
Backend

Motiv Assist
An AI-Powered Personalized Work Assistant

Henrique Andras David San Kim Kevin Araujo

Ana Perrone Isaiah LemieuxTien Dat Johny Do

Sponsor
Representat ive

Clark Lai / Motiv

Academic
Advisor

Behrouz Far

Teaching
Ass istant

Mehdi Marzban

Motivation and the Problem

Businesses of all types store proprietary data on productivity platforms and
web services that keep company information centralized and easily accessible
to all members of the workforce. One such data source is Notion, a versatile
organizational tool that offers use cases including documentation, task
management, collaborative workspaces, client and sales management and
more. However, while the collaborative abilities Notion and other productivity
services provide make the business landscape more convenient than ever, these
platforms still lack concrete personalization features that could enhance data
interactions making them smarter and more efficient. This presents a significant
problem in the dynamic business sector where every second counts. Employees
must dig through hundreds of document pages to find small and large amounts
of information necessary for the completion of trivial tasks, wasting valuable
time in the process.

The Team

Objective and Project Scope

Our primary objective is to amplify the value derived from companies’
proprietary data assets, while also enhancing the user experience within the
context of conversational AI-powered data retrieval. Our solution entails
constructing a personalized chatbot that seamlessly integrates with Notion,
securely embedding records to be quickly and easily accessed by the
automated assistant, enabling employees to engage in conversations with their
own documents. This work assistance chatbot will tailor its responses, ensuring
effortless access to companies' internal knowledge bases, all while prioritizing
data security. An intuitive user interface will make interactions smoother, and
the chatbot will incorporate memory and history-tracking features to foster
context-aware and cohesive dialogues with users. Our goal is straightforward:
Enabling employees to ask questions about their own documents and receive
answers that truly suit their needs, making chatbots more helpful while
keeping companies' data safe.

Embedding and Retrieval Process

Embedding and retrieval works based on a Retrieval-Augmented Generation
(RAG) system which enriches a user’s question with additional context from
other sources to supply the retrieval algorithm creating highly relevant
responses. Before embedding is commenced, documents from Notion must be
extracted and converted into single page documents using LangChain. These
documents are then split into small chunks of data using LangChain for the
embedding. Embedding is completed by transforming text into a list of numbers
allowing computers to understand, while preserving meaning and relationships
between words in a text. This is accomplished using OpenAI’s embedding
model. These large documents, now split into small chunks of mathematical
data, or vectors, are stored in a vector database, which plots each vector in
close proximity to other semantically related vectors (simplified example
below). For this project we used pgvector, a vector similarity search extension
for PostgreSQL. The closer two vectors are in the multi-dimensional vector
space, the stronger their semantic relationship is.

Once the data embedding is completed, a user may ask a question. Like the
data in the embedding step, the question itself must be embedded into the
vector space to perform a similarity search. Then k vectors with the closest
proximity to the user’s question are collected, where k is defined by us, and is
all sent to the Large Language Model (LLM) as “context”. The LLM compiles the
data and generates text providing an answer with relevant information back to
the user.

Methodology

Throughout the duration of the project, our group employed the agile
approach for managing project deliverables and tasks. This was completed
using one-week scrums. During the initial design phase in the fall semester,
tasks would be divided amongst group members to be completed or
progressed through during the week. Depending on the complexity of a task at
hand, sub-groups given a specific purpose could be formed. Weekly meetings
held, were meant as a time to update the rest of the group on each task’s
progress, keeping all members up to date on specifications of the project. This
ensured each group member possessed a maximum amount of understanding
on project details that they had not worked on, which was crucial for the
implementation stage during the winter semester.

For implementation, a list of features/requirements expected for the final
product the group was visualizing was created, separated into unique levels of
priority. Basic functionality was given the highest priority, while additional
features fell to lower priorities depending on their importance and determined
ease of implementation. This feature list was used to distinguish tasks during
the implementation phase of the project.

For the winter semester, again using a one-week scrum cycle, two meetings
were held per week. The first meant for minor updates to tasks or requesting
support from other members, and the second meant to demo any new
functionality completed during the week. This was repeated until the eventual
completion of the project.

The group has been able to complete a final product which successfully
integrates with Notion to process user’s questions and return a context-aware
response acting as a digital assistant with access to embedded files as selected
by the user. This meets the initial goals of the project, allowing users to quickly
acquire information, summaries, tasks, and more, saving hours searching
through documents manually.

Conclusion

"Retrieval-augmented generation for knowledge-intensive NLP tasks." IBM
Research Blog. Retrieved November 14, 2022, from
https://research.ibm.com/blog/retrieval-augmented-generation-RAG

"Embeddings - OpenAI API." OpenAI. Retrieved November 14, 2022, from
https://platform.openai.com/docs/guides/embeddings

"pgvector and Embedding Solutions with Postgres." Tembo. Retrieved
November 14,
2022, from https://tembo.io/blog/pgvector-and-embedding-solutions-with-
postgres/

References

https://research.ibm.com/blog/retrieval-augmented-generation-RAG
https://platform.openai.com/docs/guides/embeddings
https://tembo.io/blog/pgvector-and-embedding-solutions-with-postgres/
https://tembo.io/blog/pgvector-and-embedding-solutions-with-postgres/

