Flying Probe Data Acquisition PCB

Author(s): Bianca Berselli, Qinglan Lin, Dat Le, Mahira Mirza, Tianfan Zhou, Chenxiao Zhang Schulich School of Engineering, University of Calgary

Abstract

Alongside Tangent Design Solutions, we are working to develop a Data Acquisition Unit PCB for a flying probe. The goal of the DAQ is to take multiple measurements including voltage, current and power. Our deliverables include two circuit boards, firmware, software for circuit board control, and the testing script. We have developed a power measurement board and its corresponding firmware, testing script and software needed for the system's functionality, and the hardware for the DAQ developed.

Electrical Diagram – Power Measurement PCB

CONTACT Bianca Berselli Email: bianca.berselli@ucalgary.ca Phone: 587-717-8553

Test PC (Software)

Introduction

- Tangent, based in Calgary, Alberta, offers electrical, mechanical, and software design services and recently acquired SMT equipment for faster printed circuit board assemblies.
- Testing these boards is time-consuming, using a dedicated bed of nails fixture.
- The project aimed to develop a versatile data acquisition system and software to automate PCB testing.

Discussion

- The Data Acquisition PCB project is an essential tool needed for any hardware manufacturing company, to efficiently test any PCB in an automated fashion.
- Lessons learned
- correction of wiring when a PCB connection is incorrect and discovered after assembly
- Utilizing Altium and resolving issues
- Organization of all meetings and overall scheduling of the project.

Specification	Details				
Device Power Supply	Device shall run via USB or ext supply				
Control and Configuration Interface	Device shall connect to compute configuration via USB and/or I				
Programmable Data Channels	Number of 8 channels for mea stimulus of the unit under tes				
	Channels shall be configurable software.				
	Data channels shall be capable Msample/sec.				
Measured Values	Power, Voltage, Current, Resis				

Data Flow

ternal 5-24 VDC power
uter for control & Ethernet
asurements and st.
e in function via
e of sampling at 0.5-5
stance, Capacitance

Results

- PCB Design Package for Data Acquisition and Power Measurement board.
- One physical copy of the Data Acquisition Board, four physical copies of the Power Measurement Board.
- Software GUI for scripting test sequences.
- Firmware for controlling the Power Measurement Board.

Methods and Materials

- (Schulich School of Engineering)
- developed in STM32CubeIDE.
- Altium.
- Bill of material (BOM) was generated to help us estimate the price of the project.

Before and After PCB Assembly

	Flying Fic	De Data A	сч				
elector				Test	Table		
iled/software/B	ook Browse			Script	Result		
		Se	quence Type	Value	CH1	CH2	Po
led/software/pa	ars: Browse	1	Resiste	en 3.2	4	6	8
		2	Curren	t 10.0	1	3	3
ttings		3	Capaci	ta 6.25	2	3	3
СН1	Channel 1	4	Curren	t 12.0	5	7	7
		5	Voltage	e 6.25	2	3	3
CH2	Channel 3 🔽	6	Voltage	e 6.25	2	3	3
PowCH	Channel 3 🔽		voltage	9 7.25	Z	4	1
	🗌 Fail Mode						
	Power on						
Py Version	python3 💌						
ation							
	Read						
	Calibrate						
	Calibrate						
tem				Con	sole		
Add	Remove	[+]Tes	t script file	e loaded o	on 2024–0	03-24 23:3	39:21
Oters	About						

GUI Interface

• All materials, supplies and tools were provided by Tangent Design Engineering and MakerSpace

• The technology commonly used today to assemble a Printed Circuit Board (PCB) is Surface Mount Technology (STM). We are using NUCLEO-H743ZI2 as our CPU and firmware is being

• Designed the PCB in Altium. Parts were chosen from Digikey or Mouser and imported into

• Oscilloscope, power supplier and digital multimeter were used to support project execution.