oftware and derived engineering equations were used for theoretical and simulation work.

The Schulich Hand

Joshua Ellis, Brandon Jones, Kevin Moussa, Hazem Hussein, Serageldin Harara, Ayman Malkawi Schulich School of Engineering, University of Calgary

Introduction

Bio-inspired robotics are required to bridge the gap between autonomous mechanical design and intricate biological systems.

The purpose of this project is to design an underactuated robot hand capable of in-hand object manipulation.

Underactuation and in-hand object manipulation have generally been independent to one another [1].

- Underactuated systems have less actuators than degrees of freedom (DoF).
- In-hand manipulation is significant motion without losing grip or regrasping of an object.

Combining these two concepts will increase the dexterity and efficiency of underactuated hands and the simplicity and costeffectiveness of hands with in-hand manipulation.

Applications of this design:

- Autonomous search and rescue after disasters.
- Limb replacement in biomedical prosthetics.
- Exploration of inaccessible or dangerous locations.

Objectives

Design requirements:

- Size of an average human hand
- Have at least 3 phalanges
- Materials suitable for harsh environments
- Support objects up to 10kg
- Weight less than 600g
- **Bilaterial configuration**
- Maximum of 1 motor per finger
- Have a universal wrist mounting system

Objective Motions:

Pen	Longitudinal Translation >5°	Long-axis Rotation >180°		Short-axis Rotation >5°	
Ball	Palm-to-Fingertip Translation >2cm	In-Palm Rotation >5°			
Legend	: Objective Grips	Tip Pinch	Key Pir	nch	Tripod Pinc
-		No mark	-	11	NO NO

Figure 1: Objective Grips (left to right) Tip, Key and Tripod Pinches

References

- 1. A. Ramirez-Serrano, "Humanoid Robot," UVS Robotics Lab, 2018. https://www.uvsrobotarium-lab.ca/humanoid-robot (accessed Mar. 22, 2024).
- 2. Team 11, "Tendon and Actuation System for High Speed Three-Fingered Robot Hand," Department of Mechanical Engineering, University of Calgary, 2012 (accessed Mar. 22, 2024)

ROBOTARUM **Underactuated Robot Hand Capable of In-Hand Manipulation**

CONTACT

Joshua Ellis joshua.ellis@ucalgary.ca Kevin Moussa kevin.moussa@ucalgary.ca Hazem Hussein hazem.hussein@ucalgary.ca

Engineering Analysis

Motion and power analysis was performed to design/select the components of the hand such as springs, motors, pulleys, etc.

$T_{stepper} =$	= m _{object} gµ si
$T_{joint} =$	mgsin(Ø) ·

 $+k\theta_{max}$ Torque, pulley diameter, rotational position and velocity are dependent on pulley ratios between the motor and joints. (*Equation 3*). Path planning for each grip depends on pulley ratios (Fig. 4)

T_2	d_2	θ_1	ω_1
$\overline{T_1}$	$\overline{d_1}$	$\overline{\theta_2}$	$-\omega_2$

Simulation Results

Figure 5: Max tripod.

Figure 6: Secure object grip

Figure 7: Sample Tip pinch Conclusions

<u>Conclusion Statement:</u> We successfully achieved our primary project objective of designing an underactuated robot hand with a final mass of 530g capable of in-hand object manipulation and fulfilled all design criteria.

Next Steps:

Brandon Jones brandon.jones@ucalgary.ca Serag Harara serageldin.harara@ucalgary.ca Ayman Malkawi ayman.malkawi@ucalgary.ca

Figure 4: Tip Pinch Trajectory Planning

Movelt software and derived engineering equations were used for theoretical and simulation work.

Grip	Max. Object Size	Min. Object Size
Тір	121.38 mm	0 mm
Кеу	39.92 mm	17.61 mm
Tripod	117.12 mm	38.70 mm

Table 1: Object sizes for each grip

Figure 5: Displays our simulation results while iterating for defining maximum object sizes.

Figure 6: Demonstrates how our hand can be used to securely grip an object, which is useful in search and rescue operations.

Figure 7: Illustrates the Schulich Hand's precise tip pinch grip capability, which corresponds to our MATLAB-modeled trajectory planning (Figure 4), which is critical for handling delicate tasks.

Verification of simulation results. Physical hand testing under a variety of operating conditions with a variety of objects.

Implementation into The Robotarium Lab's Humanoid Project for autonomous search and rescue operations.