

78 Avenue - Innovative Project Management Solutions

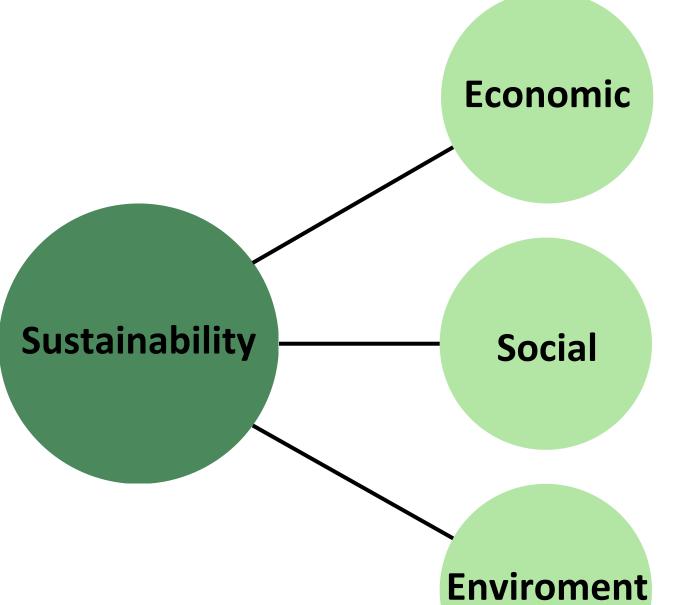
SCHULICH School of Engineering CALGARY

Andres Ulloa, Coby Proctor, Joshua Saenz, Leen Ba Haggag, Mithil Soni, Salma Elsinbawi, and Veljko Ponjevic

Objective

Formulate innovative alternative project management strategies for the ongoing preliminary activities on 78 Ave. pertaining to the construction of a car underpass and pedestrian tunnel for the future Green Line LRT project in Calgary, AB.

Project Scope


Utilize current site construction drawings provided by Graham Construction Inc. to develop the following project deliverables:

- Produce Work Packages
- Create a Work Breakdown Structure
- Conduct Quantity Takeoffs
- Develop two alternative project plans consisting of schedules and site layouts
- Cost Estimate for the chosen project plan
- Project Risk Management Plan
- 3D Site Modelling and VR Site Representation
- Sustainable Project Solutions
- Quality and Safety Report

Project Constraints

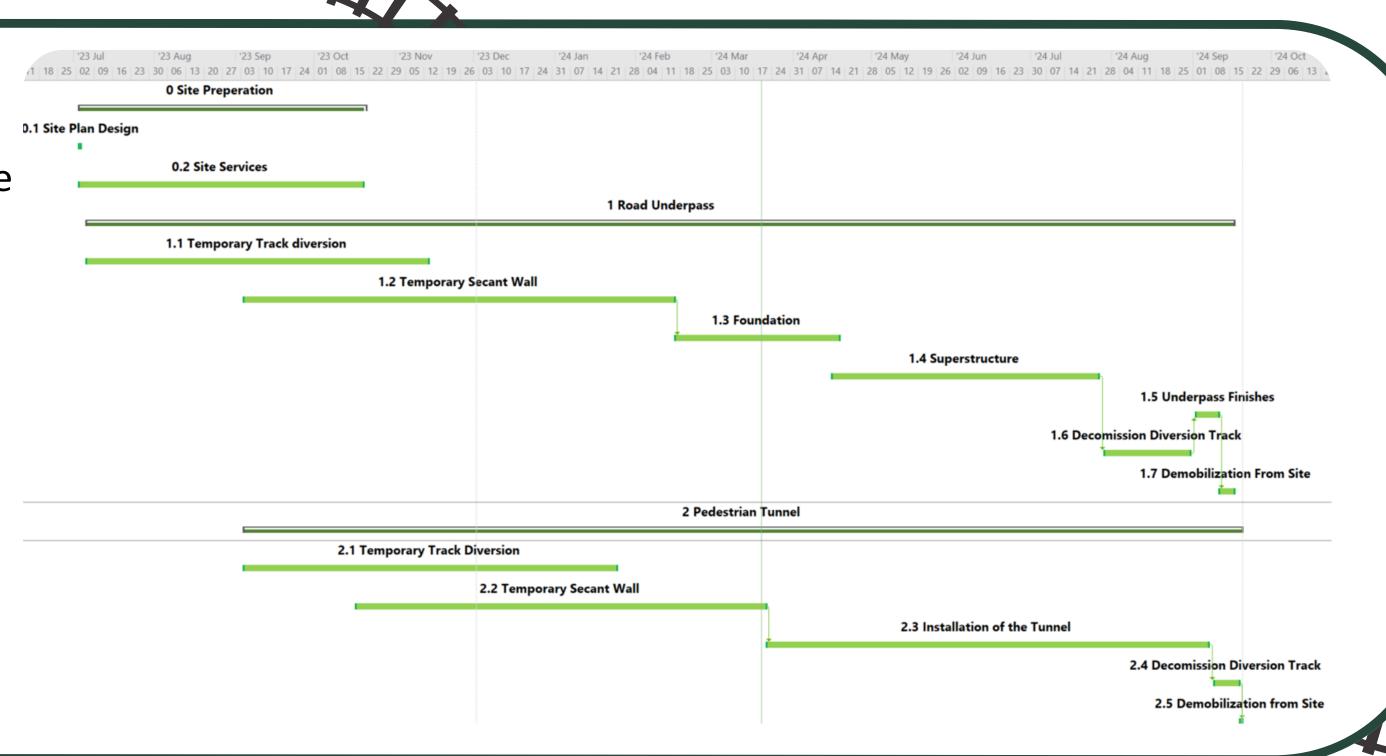
- Allow for CPKC Trains to continue operations without interruptions for the duration of the project
- Meet the 6-month (pedestrian tunnel) and 9-month (car underpass) CPKC diversion track schedule restrictions

<u>Sustainability</u>

- Designing a site layout to minimize travel distance improving efficiency
- Utilizing local material
- Prioritizing health and safety measures for workers and the public
- Creating easier mobility within the community
- Implementing erosion controls, reducing noise pollution and soil contamination on site
- Implementing a construction waste management program on site

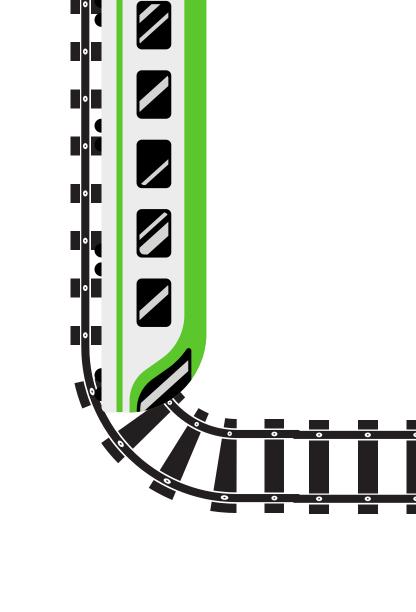
Pedestrian Tunnel

3D Modelling



Risk Managment Plan

#	Top Risks	Description	Mitigation		
1	Safety on site	Accidents related to the proximity of	-Safety training, safety inspection,		
		the railway & heavy machinery.	& emergency plan.		
			-Engineering controls (ie. guardrails)		
			-qualified personnel to alert workers		
			of incoming trains		
			-PPE, as a last resort.		
2	Delays in obtaining	Many approvals are needed for this	 Apply to approvals early. 		
	permits	project.	-Effective communication.		
			-Ensure approval requirements are		
			met.		
3	Structural &	Poor design and/or insufficient quality	-Concrete testing.		
	Geotechnical Design	control can result in a structural or	-Soil testing.		
	Risk	geotechnical failure.	-Drainage system.		
			-Consulting professionals.		
4	Weather changes	Calgary's harsh winters.	-Schedule to avoid winter.		
			-Monitor the daily weather.		
			-Use durable equipment & material.		


Schedule

- Simultaneous construction schedule best meeting project constraints
- Total Duration 445 Days
- Minimized winter work
- Increased project flexibility due to two simultaneous work fronts
- Increased labor and equipment efficiency from the ability to share resources between both project components

Cost Estimation

Code	Area	U OF M	Material	Equipment	Labour	Sub-Contract	Bare Cost
0	Indirect	LS	\$88,184.06	\$63,443.20	\$1,034,136.00	\$410,000.00	\$1,595,763.26
1	78th Avenue Underpass	LS	\$7,974,604.00	\$1,489,781.58	\$563,158.43	\$3,050,000.00	\$13,077,544.02
2	Ogden Pedestrian Tunnel	LS	\$2,774,706.65	\$410,864.38	\$347,910.09	\$0.00	\$3,533,481.12
						Total Bare Cost	\$18,206,788.40
						Contingency (10%)	\$1,820,678.84
						Overhead (10%)	\$1,820,678.84
						Profit Margin (10%)	\$1,820,678.84
						Total Cost	\$23,668,824.91

