
Sponsor: Alex Shaharudin
Software Sigmas: Mikhail Nathoo, Ernest Nikolaychuk, Saman Pordanesh, Tanish Datta, Sam Farzamfar
Department of Electrical and Software Engineering, University of Calgary

Introduction
• Privacy-Oriented Approach: Recognizing the importance of data 

privacy, our project was meticulously designed with privacy in 
mind. The system is independent and capable of running on 
local machines or private servers, ensuring that sensitive code 
remains within controlled environments. This approach 
prioritizes data security and confidentiality, offering peace of 
mind to developers and organizations alike.

• Innovative AI-Powered Solution: Our project introduces an 
innovative AI-powered solution aimed at revolutionizing code 
reviews. By leveraging advanced AI algorithms, we have 
developed a system that significantly reduces the time required 
for code reviews while enhancing their effectiveness.

• Streamlined Workflow Integration: Configured as an intuitive 
add-on for Visual Studio Code, our solution seamlessly 
integrates into developers' workflows. It provides real-time, 
precise feedback directly within the coding environment, 
allowing developers to easily incorporate it into their regular 
tasks without disruption.

• Enhanced Development Process: With our solution, developers 
can focus more on intricate and imaginative projects rather than 
spending excessive time on routine code reviews. By automating 
the evaluation of code against efficiency and design standards, 
our technology not only expedites the software development 
cycle but also ensures adherence to strict coding practices, 
ultimately leading to improved product quality.

Initial Model Selection 
Model Exploration: We embarked on a rigorous exploration of various open-
source resources such as Hugging Face, GitHub, and GPT to identify suitable 
NLP models for our project. This involved investigating approximately 40-50 
models, focusing on compatibility with the MacBook M1 and their 
documented performance. Through this process, we narrowed down the 
selection to about 30-35 compatible models, ultimately downloading and 
testing 14 of them to assess their suitability in generating reasonable 
answers to test prompts.
Primary Model Selection: Following extensive testing and evaluation, we 
selected three primary model candidates from the pool of 14 options. This 
selection process involved posing specific coding tasks and code explanation 
questions to each model and scoring their responses based on predefined 
rubrics. After averaging the scores from multiple perspectives, we identified 
one 7b model and two 13b models as the most promising candidates for our 
project's requirements.

Abstract
• The LM Studio & ChatGPT VSCode Extension presents an 

innovative solution for seamlessly integrating advanced 
language models into the coding workflow. In addition to 
enabling connections to local Language Models (LLMs) through 
LM Studios and OpenAI's ChatGPT API, this extension now offers 
the capability to utilize Google Cloud for online private 
computing. This enhancement extends the flexibility of the 
extension, allowing users to harness the power of cloud-based 
computing resources while maintaining privacy and security. By 
providing a unified interface within Visual Studio Code, 
developers can effortlessly access a range of language model 
functionalities, including code completion, documentation 
generation, and natural language understanding, enhancing 
productivity and enabling more efficient development 
workflows. With its expanded feature set and emphasis on user 
convenience, the LM Studio & ChatGPT VSCode Extension 
continues to lead the way in facilitating the integration of AI-
powered language capabilities into the development process.

VSCode Extension

• Seamless Integration: The extension seamlessly integrates with VSCode, 
offering a familiar environment for code review. Developers can 
effortlessly incorporate code review tasks without switching applications.

• Custom Prompt: Users can customize prompts to meet project 
requirements, empowering developers to focus on specific aspects of 
code evaluation and streamline the process.

• Prompt Options: A drop-down menu offers various prompt categories 
like efficiency or design standards, ensuring comprehensive code 
evaluation with flexibility and ease of use.

• Code Input: Developers can input code directly within the extension, 
initiating review sessions without leaving their workspace, promoting 
efficiency.

• AI Generation: Leveraging advanced AI, the extension provides real-time 
feedback and suggestions based on code input and prompts, facilitating 
informed decisions and enhancing code quality.

Model Evaluation 
Comprehensive Model Evaluation Process: Our model evaluation process involved a multi-step approach, beginning with the selection of three primary model candidates 
based on their performance in responding to four specific questions - two on coding tasks and two on code explanation. Each response was meticulously scored according to 
predefined rubrics, allowing us to objectively assess the models' capabilities from different perspectives.
Diverse Dataset Evaluation: For the main model evaluation experiment, we utilized a diverse dataset consisting of 200 code samples spanning four different programming 
languages: C++, JavaScript, TypeScript, and Go. We posed code explanation questions to each model 200 times, resulting in a total of 600 responses evaluated. This 
extensive evaluation provided a comprehensive understanding of the models' performance across various programming languages and coding scenarios, enabling us to 
make informed decisions regarding the selection of the main model for our project.

Requirements 

• The extension and model require a minimum of an M1 MacBook 
or equivalent Windows system for optimal performance.

• Alternatively, for larger-scale projects or specific company needs, 
utilizing a local industrial server can provide sufficient 
computational power.

• Cloud computing options such as Google Cloud Platform, AWS, 
or Firebase can also be utilized to leverage scalable resources for 
running the extension and model efficiently.


