

Background & Motivation:

- Autonomous manufacturing relies on complex data analysis for customization, presenting the critical challenge of maintaining machine longevity and performance.
- Predictive maintenance is essential for operational efficiency, targeting components like bearings to significantly reduce downtime and costs.
- Thus, experiments with novel features are needed to explore different predictive maintenance solutions. **Objective**:
- To develop an automated rotary platform equipped with advanced sensors.
- Aimed at conducting future experiments regarding proactive monitoring and predictive analytics of bearing health. Future results will facilitate timely maintenance actions and enhance component lifespan.

Novelty:

- Incorporates sound sensors to compliment vibrations in detecting failure.
- Employs high RPM range to accelerate bearing degradation, producing faster data recording sessions.

Methodology	
Component Selection: Selected a compatible motor and bearing for the core of the platform, ensuring the correct operating conditions. Physical Assembly:	 Impresoperation Proaction analy
By integrating the selected mechanical and electrical components for data capture. AI Model Development: By using pre-existing datasets to recognize patterns and predict bearing health. System Integration: By combining the mechanical assembly.	 Lab sou plat Con forc Al N
sensor systems, and AI analytics into a cohesive platform. Further failure methods (poor lubrication, debris) introduced to further accelerate testing.	ana usir Tim be r

Project 8 - Rotary Platform for Predictive Maintenance

Sponsor: Dr. Jihyun Lee. Acknowledgement: Zhicong Rong Author(s): Muhannad Al Balushi, Pulkit Singh, Gustavo Da Costa, Rahian Islam, Olamide Oriola

Department of Mechanical and Manufacturing Engineering

Applications

roved machinery uptime and reduced rational costs

ctive monitoring and predictive

ytics of bearing health

Framework

View: For capturing data from ind sensors and a load cell, and for tform control.

ntrol Lookup Table: For actuator ce adjustment.

Model: Receives sensor data for lysis and processing. Built

ng multivariable linear regression. ne domain features determined to most important.

Syste	m Sett	inas	
Serial Port	Fil	e name	
File Path			
Set Run Tim	e (s) Set Sar	nple Rate (Hz)	Baud Rate Override
Loop Rate (H	Hz) Numb	er of Loops	
Runti	ime		
Days	Hours	Minutes	Seconds

0

Platform Design Bearing Housing Polycarbonate Casing Output Data **Actuator Control** Y Axis Z Axis rgency Stop Button Position in Percentag

LabView Interface

Time Step

Integrates a bearing-shaft-motor assembly with an actuator for precise load application on the bearing Utilizes an S-type load cell for accurate force measurement, complemented by a durable polycarbonate casing to enhance safety and durability of the platform.

🕴 Stop

Features a custom-developed LabVIEW script for efficient electronics control and processing of output data, facilitating user-friendly operation and analysis.

Actual Platform

