PROBLEM STATEMENT
Design a cryo-purification process that treats 30,000 bbl/day of oil produced water to a maximum impurity level of 3,500 mg/L TDS for agricultural irrigation.

Utilize Alberta’s freezing ambient winter temperatures to drive energy savings.

PROJECT DRIVERS
- 50% of global population experiences severe water scarcity at least once a year.
- 51 water shortage advisories currently in place for select water management areas across Alberta.
- 60% of consumed water in Alberta is for agricultural irrigation.
 - Alberta produces 486.4 thousand bbl/day of crude oil.
 - For each barrel of oil 3-10 barrels of water is produced.
 - But oil produced water is too unsafe for re-use and is disposed by deep well injection.
 - Deep well injection costs $1.60 - $2.10 per barrel.
- Current non-scalable produced water treatment processes range from $2.55 - $10.

PROCESS SAFETY CONSIDERATIONS
- Cold PPE requirement for operators due to low temperature operating conditions.
- Moving mechanical parts require special operator training and emergency shut-down procedures.
- Chloride ions cause equipment corrosion so 316 stainless steel was used for exposed equipment.
- CO2 refrigerant may cause asphyxiation, requiring use of a ventilation system and safety control valves to prevent leaks.

ENVIRONMENTAL CONSIDERATIONS
- Reinjection has been related to seismic events; however, we are reducing the overall reinjection requirements by 66%.
- Spills will be a more concentrated brine than typical produced water. The process will be located near the reinjection well to reduce risk.
- 7.9 kgCO2e/bbl GHG emissions. A renewable electricity source is needed to minimize the emission intensity of the process.

PRODUCT REGULATIONS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>Feed</th>
<th>Product</th>
<th>Ab Regulations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sodium Adsorption Ratio (SAR)</td>
<td>N/A</td>
<td>145</td>
<td>11</td>
<td>6 - 12</td>
</tr>
<tr>
<td>Total Dissolved Solids (TDS)</td>
<td>mg/L</td>
<td>102,160</td>
<td>3,475</td>
<td>>3,500</td>
</tr>
<tr>
<td>Electrical Conductivity</td>
<td>dS/m</td>
<td>8.064.9</td>
<td>1.5±0.4</td>
<td>0.5 - 1.9</td>
</tr>
</tbody>
</table>

PROCESS OVERVIEW

De-oiled Produced Water

30,000 bbl/d

~ 100,000 mg/L TDS

Pre-treatment

Cooling

Cooling + Freezing

Ice & brine slurry

Recycle

Separation by Flotation

Unwashed ice

Recycle

Washing

Purified ice

Recovery

Melting

19,666 bbl/d

~ 3500 mg/L

Irrigation water

10,334 bbl/d

~ 296,000 mg/L

Brine for reinjection

ECONOMICS

- **Total Capital Investment (TCI)**: $247,000,000
- **Operating expenses (OPEX)**: $26,400,000
- **Revenue/bbl_product**: $2.03
- **Revenue/bbl_product** Project Break-Even Revenue/bbl_Product: $1.64

ACKNOWLEDGEMENTS
Thank you to our supervisor Dr. Roman Shor for his guidance and support throughout this project. Thank you to our industry sponsors Jesse Powell and Dustin Ellis from NCS Multisite for their technical guidance.