er Soluti Cancer Solutions

BACKGROUND

Cancer is a leading cause of death worldwide.¹

- American patients diagnosed with this disease are faced with Costs exceeding \$100k²
- Multiple cycles of treatment that can increase drug resistance

There is an imminent need to accurately identify an appropriate treatment on the first test to increase the chance of survival. Encapsulate develops tumour-on-chip technology with cells from patient biopsies and uses them to test different chemotherapy treatments, determining which is most effective for each patient.

DESIGN CHOICES

Material Selection

Polyisocyanurate

Exterior

Enclosure Design

- Double-paned acrylic door to reduce heat loss by 87%
- Storage space for electrical parts and CO_2 System
- Compact dimensions: 41.2cm (L), 40.3cm (W), 58.1cm (H)

Stainless Steel 30

Number of Patients Treated & Number of Drugs Tested

- Maximizing the number of patients treated & drug combinations
- Minimizing the space taken up by the manifolds

5% CO₂-containi cvlinder

Fan & Heat Bed Placement

Hose

to cylinde

- Heat bed based on ANSYS thermal simulations
- Fans based on SolidWorks flow simulations

User Interface

by user upon

high CO₂ alert

Interior

Insulation

CREATING AN AUTOMATED CELL CULTURING MACHINE

Sophia Cliplef, Kirsten Korsrud, Diya Hossain, Madina Shayne, Hakiri Diarra, Valentine Ogechi Department of Mechanical and Manufacturing Engineering, University of Calgary

OUR SOLUTION

Culturing Settings —	×
Cell culturing settings	
Start Program Stop Program	
Heat Bed Temperature:	
5	
Fan Speed:	
3	
Pump Flow Rate:	
8	
Changes have been saved	
Confirm Settings	
Alarm Log	

A low-cost automated device that integrates with Encapsulate's on-chip technology and simulates human body conditions to grow, maintain, and drugtest cancerous micro-tumours.

Methods

SolidWorks Design

CO₂ compartment containing 12 media flasks & control board

Double-paned viewing window for easy monitoring

> Heat bed for heating enclosure

Testing

SUB-SYSTEMS

Thermal Regulation

Requirement: Maintain 37°C **Components**: 3D printer heat bed, 4 fans

1

Pump Control

Requirement: Control the fluid pump through a Raspberry Pi interface using the Modbus protocol, allowing for pump routine automation **Components**: Pump, Raspberry Pi, serial cable, RS485-USB adapter

Physical Enclosure

Requirement: Aesthetic appearance, compact size

Components: PLA exterior, insulation, stainless steel 304 interior, acrylic

CO₂ Regulation

Requirement: Maintain 5% CO₂ **Components**: Carbogen cylinder $(5\% CO_2, 95\% O_2)$, hose, manual inlet and outlet ball valves, CO₂ sensor, media flasks with CO_{2} permeable lids, airtight "media chamber", silicone tubing

Fluid Circulation

Requirement: Maximize number of patients treated and drugs tested

Components: 24 biochips, 4 acrylic manifolds, silicone tubing, waste collection vials

Goal: Determine the heat distribution in the enclosure

ceiling

level remains constant

Manifold Tests

Goal: Prevent leaks & chip

Results: Dyed water successfully ran through 20 out of 24 biochips; minimal leaking was observed

As with any engineering project, we have identified areas for improvement, including:

- and remove
- pressure flow to eliminate leaks
- Optimizing air circulation for even heating

[1] n.a., "ISS National Lab-sponsored research aims to grow tumors in microgravity to test chemotherapy effectiveness," ISS National Laboratory, https://www.issnationallab.org/release-spxcrs30-encapsulate-cancer-research/ (accessed Mar. 24, 2024). [2] M. Siddiqui and S. V. Rajkumar, "The high cost of cancer drugs and what we can do about it," Mayo Clinic proceedings, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3538397/ (accessed Mar. 25, 2024).

FUTURE IMPROVEMENTS

Smaller components that can be concealed within the device • Telescoping shelves to make manifolds and biochips easier to access

Manifold

Narrowing the manifold and biochip channels, allowing for higher-