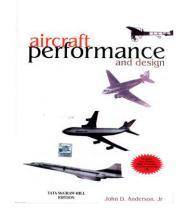
Long Range Surveillance VTOL Design Framework Software

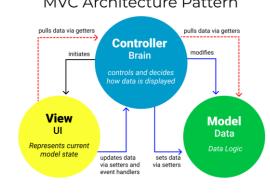
Author(s): Chunsheng (Roy) Xiao, Hesham Elkaliouby, Manahil Wali, Marki Costa, Roberto Fornez, and Sami Op Schulich School of Engineering, University of Calgary

Introduction and Ini Research

Problem

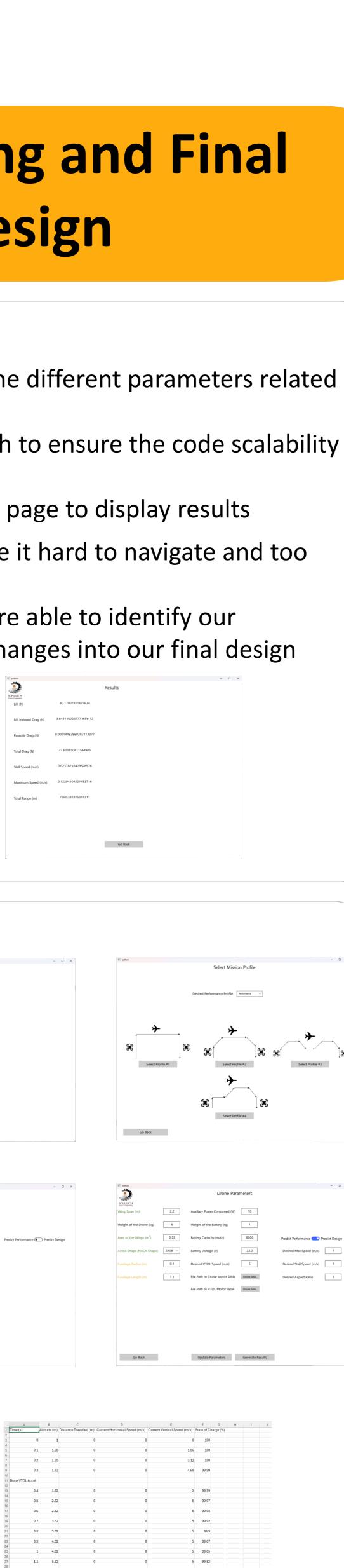
- The need for Unmanned Aerial Systems (UAS) is becoming more apparent with increasing end-use applications, includin arctic surveillance, agriculture, search and rescue, wildfire monitoring, border security, etc.
- As such, there is a growing need to expand the ability to design UAS vehicles. However, it is currently an arduous endeavor with scarce software solutions.



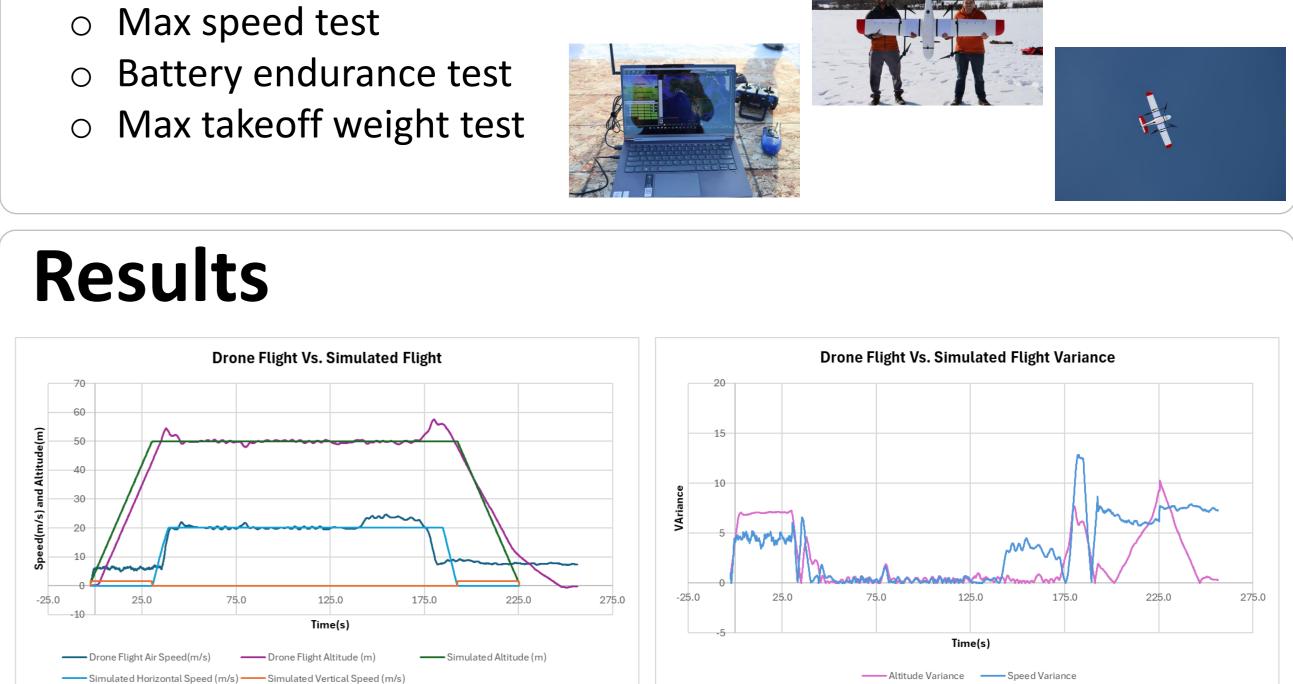

Our Solution

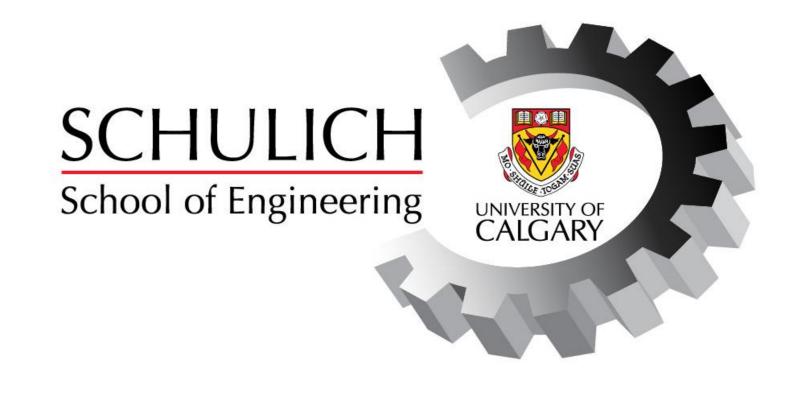
- •Creation of a predictive performance modelling framework • Designed for low-subsonic, fixed-wing E-VTOL aircrafts.
 - Validate by utilizing a MakeflyEasy HERO E-VTOL UAV.
- •Framework should accept key parameters such as
- Wingspan, weight of the drone, and battery capacity.
- •It will then generate performance metrics such as
- Range, max speed, stall speed.
- •Final deliverables
 - Predictive modelling framework.
 - CSV detailing flight break down.

Methods


- Derived and verified our design approach using John D. Ander "Aircraft Performance and Design"
- Created and broke down flight profiles into various period sec Take off, landing, climb, descent, and cruise period sections ca using reference material formulas.
- Aimed to create easily adaptable software with a software architecture that allows for each piece to be compartmentali

ersons calculated	tial	Protoy	pin De
ersons calculated		 Our first prototype implemented to drone design in one place Employed an iterative design ap and future enhancements Implemented a user input and o This approach was cluttered and open ended With the help of our sponsors, we shortcomings and implement th 	proach output p I made
erssons cctions. calculated		Import	Select Mission Type Surveilance Payload Delivery
calculated	ersons	Select Mission Parameters Ving Span (m) 22 Auxiliary Power of Indidation of the minite Temperature (i) 288.15 Veight of the Drone (kg) 6 Veight of the Base Base Station Altitude (m) 1 Air Pressure (Pa) 101325 Aira of the Wings (m ²) 0.53 Battery Voltage (M) Cruise Altitude (m) 400	attery (kg) 1 (mAh) 6000 (V) 22.2 peed (m/s) 5 se Motor Table Oxone Telse.
		Go Back Update Para	ameters Generate Results
ized.	ized.	Cruising Performance Mission Type Surveilance Minimum Cruise Thrust Speed (m/s) 1.642e+01 Mission Type Surveilance Stall Speed (m/s) 1.76e+01 Performance Profile Performance Maximum Speed (m/s) 3.989e+01 Mission Profile Mission Profile #1 Total Range (m) 3.021e+03 Target Distance (m) 40.0 Cruise Altitude (m) Use Mission Runde (m) 40.0	3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 17 18 19 20 21 17 18 20 21 22 23 24 24 25 26 27 28 29 30 31 32 33 34 35




Validation Flight Tests

- MakeflyEasy HERO E-VTOL UAV

Analysis

- tests
- Pros:
- phases of flight
- plots are very closely matching • Cons:
- The data diverges in the deceleration and landing segments beyond simple mismatches in time.
- This divergance is due to the simulation's neglect to consider the air brake procedure done to prepare for landing
- Potential Improvements and Next steps
 - Adding additional period sections to account for moments when the VTOL and fixed-wing flight modes are active simultaneously Add custom mission design using the predefined period sections

Results and Validation

• Executed a flight plan following the first mission profile to perform the following test procedures to validate our model utilizing the

• Comparing the drone flight data to the simulated flight data we find the results from our program closely follow the flight data from the

• The takeoff, acceleration and cruise periods matched up very closely with the drone flight data, with little variance in these

• The variance that was found was due to slight mismatching in times. Otherwise, it is evident the slopes and general shape of the