WEARABLE PERCUTANEOUS STIMULATOR FOR POLYCYSTIC OVARY SYNDROME (PCOS)

Kirchhoff’s Angels, Schulich School of Engineering, University of Calgary
Academic Advisor: Dr. Colin Dalton, PhD, P.Eng

ABSTRACT
Polycystic ovary syndrome (PCOS) is a common endocrine disorder that affects reproductive-aged women. It is characterized by hormonal imbalances that can lead to a variety of symptoms, including chronic pain, weight gain, irregular menstrual cycles, ovarian cysts, insulin resistance and decreased fertility [1]. Current pain management techniques, like pharmaceuticals, may have unwanted side effects and limited efficacy. This project focused on creating a discreet percutaneous electrical stimulator for pain management in PCOS patients. Research was conducted to determine the most effective signals for chronic and acute pain management. A 3D printed casing was designed to enclose the custom PCB containing the stimulator circuit and microcontroller. The device is attached to microneedle electrodes and is designed to be worn on the abdomen. An oscilloscope was used to confirm the signal output was as intended per design specifications.

INTRODUCTION
PCOS affects 1 in 10 women [2], and is the leading cause of infertility [3], yet the current available treatment options are extremely limited. Studies have shown that there is a link between low frequency neumodulation and the improvement of PCOS symptoms [4]. This is typically done transcutaneously or intramuscularly. The capstone sponsor company, Neuraura Biotech Inc., has developed percutaneous microneedle patches that can be used to stimulate the peripheral nervous system. The capstone team has developed the LoOop, a proof-of-concept prototype for a wearable stimulator unit to connect to Neuraura’s PCOS microneedles.

CONSIDERATIONS

User Needs Criteria
User Interface/ Interactions
The device has a simple design with only the buttons necessary to control device functions. These include a power button, two buttons for intensity control, and one for toggling modes. LoOop is a flexible, wireless device that withstands day-to-day movement, maintaining discreet while worn by the user.

Design Solution
Printed Circuit Board
The custom PCB integrates the stimulator circuit components including a current sink and source, and a voltage regulator. The PCB also includes headers for interfacing signals between the charging module and microcontroller as well as LEDs and pushbuttons to incorporate the user interface.

Specifications
Neuraura Specifications
- Size: 16x40x0.8 cm
- Rechargeable battery with 3-5 hour runtime on one charge
- Connect to microneedle electrodes
- Bluetooth compatible parts
- Budget: $1575

FUTURE WORK
- Outsourced PCB assembly will enable the use of smaller component packages, further reducing the device footprint and making it even more discreet
- Neuraura will use this device for bench-testing with their proprietary micro-electrodes
- Neuraura will be reprogramming the device to be controlled via Bluetooth from an app
- With human trials, Neuraura will hone the optimal waveforms of the device for PCOS symptom relief

CONCLUSION
PCOS is a disease which to date has no cure. The LoOop will be a treatment option for women to decrease the impact of symptoms and improve their quality of life

REFERENCES