
Development of a Software Solution for Precision Landing Drones

Joel Happ, Jerome Gobeil, Taylor Noel, Maral Rasuli Arasi, Niyousha Raeesinejad

Department of Electrical and Software Engineering, University of Calgary

Drone Assembly 

Several hardware components were used to assemble the drone:
Pixhawk; Raspberry Pi 3; Raspberry Pi Camera; RC Controller;
Radio Receiver; Mamba Board F50 MK22 to connect the Pixhawk
and the Raspberry Pi to the battery and; 2 batteries (one used to
power the drone and the other a backup).

The drone kit used includes the body of the drone and motors. For
additional structural support, we designed and 3D printed the
following parts:

• A gimbal to hold the camera perpendicular to the drone.
• 4 landing gears for stable landing.
• 2 mounts for the Pixhawk and Raspberry Pi.

Due to time constraints and challenges of assembling a fightable
drone, an IRIS drone provided by our sponsor – Lockheed Martin –
has been used to run test flights with our integrated solution.

Simulation Testing

Software simulation was leveraged to validate our computer vision-based
precision landing solution. While not a full replacement for real world tests,
software simulation has many advantages:
• It is low risk; In the event of a crash, no damage is done to the drone,

operators, or the environment.
• It makes performing and repeating tests very easy as the tests are not

affected by factors such as weather, drone battery, and space availability.
It is also much easier to compare results.

• It allows for much faster prototyping as it is faster to set up than an
actual drone.

The following tools were leveraged for simulation testing:
• Gazebo: An industry standard simulation software which simulates a

virtual environment.
• Ardupilot and SITL: An open-source autopilot SITL allows for simulating

a ArduPilot autopilot.
• MissionPlanner: A popular ground control station used to fly ArduPilot

drones.
• Python scripts were also used to fly the drone, receive simulated video

output, and configure the drone and virtual environments.

The figure below presents the simulated test flights. On the left is the Gazebo
window with the simulated drone and a landing target in the back of a pickup
truck. The top right window displays our simulated video output displaying
the back of the pickup truck and the landing target highlighted in blue
showing that it is detected. The bottom right terminal window is running
various tools mentioned above.

Motivation

As flying drones grow in popularity and usage, there is increasing
demand for technology that enables drones to perform intelligent
landings. GPS can guide drones to a general area, but it lacks
enough precision to land on a specific platform like a launchpad, a
car, or a boat. High-precision landings are desirable as they would
allow for faster turn-around time when launching and recovering a
drone, allow for landing on moving platforms and reduce the risk of
collisions when landing. The objective of our project is to solve the
problem of manually having to land drones on stationary and
moving targets by creating a precision landing program. We have
created a software solution that helps a drone land using distance
detection and precision landing on stationary targets. To validate
our solution, we have conducted tests inside an industry-standard
simulation program and assembled a physical drone as well.

Computer Vision

Our computer vision solution helps the drone detect the correct location
to land. The landing platform is demarked by an ArUco code which is
detected by our computer vision algorithm. Then, based on the known
size of the code and the focal length of the camera, we calculated the
distance to the center of the code as well as its relative x and y
displacement. Afterwards, we adjust these measurements to consider
the rotation of the drone, which gives us a final measurement of the
location of the landing platform relative to the drone (as shown in the
figure below).

Connect with us!

On average, our measurements have a 5% margin of error,
and this yields good results in practice as the drone reruns
the computer vision algorithm at a high frequency so that
the position is continually updated as the drone moves
closer towards its target. The following tools were leveraged
for computer vision solution implementation:

• OpenCV: A Python library for camera calibration,
ArUco Code detection, and functions to get the
normal vector of the ArUco Code.

• ArUco Codes: Used to detect landing targets.


	Slide 1

